Write the factors of the following monomials:

ANSWER:

(1) 7p= 7 × p Hence, factors of 7p are 7 and p.

(2) 6m= 2 × 3 × m Hence, factors of 6m are 2, 3 and m. (4) 22*ab* = 2 × 11 × a × b Hence, factors of 22*ab* are 2, 11, a and b. (5) $p^2 q$ $= p \times p \times q$ Hence, factors of p^2q are p, p and q. (6) $10xy^2$ $= 2 \times 5 \times x \times y \times y$ Hence, factors of 10xy² are 2, 5, x, y and y. (7) $5a^2$ = 5 × a × a Hence, factors of 5a² are 5, a and a. (8) 15*m*²*n* $= 3 \times 5 \times m \times m \times n$ Hence, factors of 15m²n are 3, 5, m, m and п. (9) 30*a*²*b*² $= 2 \times 3 \times 5 \times a \times a \times b \times b$ Hence, factors of 30*a*²*b*² are 2, 3, 5, *a*, *a*, *b* and b. $(10) 12x^3$ $= 2 \times 2 \times 3 \times x \times x \times x$ Hence, factors of 12x³ are 2, 2, 3, x, x and Х.

Find the common factors of the following monomials by inspection only.

(1) $6m^2n^2$, $10m^2n$ (2) 38*a*³*b*², 57*ab*² (3) $11x^2y^3$, xy^2 (4) $35p^2q^2r$, $40p^3q^2$, $50pq^2r$ (5) $15x^3y^3$, $39x^2z^2$, $48xy^2z^3$

ANSWER:

(1) $6m^2n^2$, $10m^2n$ The highest common factor of 6 and 10 is 2 Common factor of m^2 and m^2 is m^2 Common factor of n^2 and n is nHence, the common factor of the monomial $6m^2n^2$ and $10m^2n$ is $2m^2n$

(2) 38*a*³*b*², 57*ab*²

The highest common factor of 38 and 57 is 19

Common factor of a^3 and a is aCommon factor of b^2 and b^2 is b^2 Hence, the common factor of the monomial 38 a^3b^2 and 57 ab^2 is 19 ab^2

(3) 11*x²y³, xy²* The highest common factor of 11 and 1 is (3) $11x^2y^3$, xy^2

The highest common factor of 11 and 1 is 1

Common factor of x^2 and x is xCommon factor of y^3 and y^2 is y^2 Hence, the common factor of the monomial $11x^2y^3$ and xy^2 is $1xy^2 = xy^2$

(4) $35p^2q^2r$, $40q^3r^2$, $50pq^2r$ The highest common factor of 35, 40 and 50 is 5

Common factor of p^2 , p^0 and p is $p^0 = 1$ Common factor of q^2 , q^3 and q^2 is q^2 Common factor of r, r^2 and r is rHence, the common factor of the monomial $35p^2q^2r$, $40q^3r^2$ and $50pq^2r$ is 5 q^2r

(5) $15x^3y^3$, $39x^2z^2$, $48xy^2z^3$ The highest common factor of 15, 39 and 48 is 3 Common factor of x^3 , x^2 and x is xCommon factor of y^3 , y^0 and y^2 is $y^0 = 1$ Common factor of z^0 , z^2 and z^3 is $z^0 = 1$ Hence, the common factor of the monomial $15x^3y^3$, $39x^2z^2$ and $48xy^2z^3$ is 3x (1) (1) = 3x

(1) 4*a* + 8*b*

ANSWER:

4a + 8b $4a = 2 \times 2 \times a$ $8b = 2 \times 2 \times 2 \times b$ Here, 2 and 2 are the common factors of the given terms. Hence, $4a + 8b = 2 \times 2(a + 2 \times b)$ = 4(a + 2b)

(2) 5*m* + 15*n*

ANSWER:

5m + 15n $5m = 5 \times m$ $15n = 3 \times 5 \times n$ Here, 5 is the common factor of the given terms. Hence, $5m + 15n = 5(m + 3 \times n)$ = 5(m + 3n)

$$abp - abq$$

 $abp = \underline{a} \times \underline{b} \times p$
 $abq = \underline{a} \times \underline{b} \times q$
Here, a and b are the common factors of
the given terms.
Hence, $abp - abq = a \times b (p - q)$
 $= ab (p - q)$

(4)
$$x^2 + x^3$$

ANSWER:

$$x^{2} + x^{3}$$
$$x^{2} = \underline{x} \times \underline{x}$$
$$x^{3} = \underline{x} \times \underline{x} \times x$$

Here, x and x are the common factors of the given terms.

Hence,
$$x^2 + x^3$$

= $x \times x (1 + x)$
= $x^2 (1 + x)$

(5) *mnx* + *mny*

ANSWER:

mnx + mny $mnx = \underline{m} \times \underline{n} \times x$ $mny = \underline{m} \times \underline{n} \times y$ Here, *m* and *n* are the common factors of the given terms. Hence, $mnx + mny = m \times n (x + y)$ = mn (x + y)

(6)
$$4x^2y + 3xy^2$$

$$4x^{2}y + 3xy^{2}$$

$$4x^{2}y = 2 \times 2 \times x \times x \times y$$

$$3xy^{2} = 3 \times x \times y \times y$$
Here, x and y are the common factors of the given terms.
Hence, $4x^{2}y + 3xy^{2} = x \times y (2 \times 2 \times x + 3 \times y)$

$$= xy (4x + 3y)$$

$$15p^{2}q - 20q$$

$$15p^{2}q = 3 \times 5 \times p \times p \times q$$

$$20q = 2 \times 2 \times 5 \times q$$

Here, 5 and q are the common factors of
the given terms.
Hence,
$$15p^{2}q - 20q = 5 \times q (3 \times p \times p - 2 \times 2)$$

$$= 5q (3p^{2} - 4)$$

(8)
$$a^{2}bc + abc^{2}$$

$$a^{2}bc + abc^{2}$$

$$a^{2}bc = \underline{a} \times \underline{a} \times \underline{b} \times \underline{c}$$

$$abc^{2} = \underline{a} \times \underline{b} \times \underline{c} \times c$$
Here a, b and c are the common factors of the given terms.
Hence, $a^{2}bc + abc^{2} = a \times b \times c (a + c)$

$$= abc (a + c)$$

(9) 18*m*²*n* - 27*m*³

ANSWER:

 $18m^{2}n - 27m^{3}$ $18m^{2}n = 2 \times \underline{3} \times \underline{3} \times \underline{m} \times \underline{m} \times n$ $27m^{3} = \underline{3} \times \underline{3} \times 3 \times \underline{m} \times \underline{m} \times m$ Here 3, 3, m and m are the common factors of the given terms. Hence, $18m^{2}n - 27m^{3} = 3 \times 3 \times m \times m (2 \times n - 3 \times m)$ $= 9m^{2} (2n - 3m)$

(10) $24p^3q^2 + 28p^2q^3$

ANSWER:

 $24p^{3}q^{2} + 28p^{2}q^{3}$ $24p^{3}q^{2} = \underline{2} \times \underline{2} \times 2 \times 3 \times \underline{p} \times \underline{p} \times p \times \underline{q} \times \underline{q}$ $28p^{2}q^{3} = \underline{2} \times \underline{2} \times 7 \times \underline{p} \times \underline{p} \times \underline{q} \times \underline{q} \times q$ Here 2, 2, *p*, *p*, *q* and *q* are the common factors of the given terms. Hence, $24p^{3}q^{2} + 28p^{2}q^{3} = 2 \times 2 \times p \times p \times q$ $\times q (2 \times 3 \times p + 7 \times q)$ $= 4p^{2}q^{2} (6p + 7q)$